
Paschal U. Offor a*, K. G. Egbulonu aø, A. Ikwumezie aø and A. I. Njoku a

a Department of Economics, Imo State University, Owerri, Nigeria.

Authors’ contributions
This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information
DOI: 10.9734/AJEBA/2022/v22i1730642

Unceasing substantial loss of intellectuals and technical personnel from any nation causes dire depletion of the economy of that nation and should give anyone who means well for the nation serious cause for concern. Offor P. U. et al (2022) used matching function model to analyse reasons for brain drain with a case study of a recruitment exercise organized in August 2021, in Abuja, by the Saudi Arabia health ministry for Nigerian medical doctors. This paper is all about investigating empirical relevance of Offor P. U. et al (2022)'s matching function model. With the model, our target is to carry out empirical investigation of the relationship between unemployment and Nigeria's brain drain (1990 – 2020) using secondary data. The ARDL model is our parameter estimator. The matching function model is found to be stable and the empirical investigation reveals that Nigeria's brain drain is not necessarily caused by unemployment rate in Nigeria; some other variables like poor real GDP (PPP based) are significantly responsible. The study concludes with a recommendation that Nigerian authorities should take giant strides to fix the insecurity problems of the country in order to create safe environment that can attract both local investments and foreign direct investments which will, among other benefits, favour Nigeria in exchange rate, improve her GDP and discourage brain drain.
Keywords: Matching function; human-capital flight/brain drain; purchasing power parity; unemployment rate.

1. INTRODUCTION

Some time in August 2021, the news made the rounds that over 500 Nigerian medical doctors teemed out at Sheraton Hotel Abuja for an organized recruitment exercise by the Saudi Arabian health ministry. This came at a time when resident doctors under the aegis of the Nigerian Association of Resident Doctors were on strike. The strike was over the inability of the Federal Government to implement the agreements it entered with the union 113 days after it suspended the previous strike.

The televised news showed a large crowd of Nigerian doctors with different specialties such as anesthesia, ICU, pediatric surgery, emergency medicine, orthopedic surgery, family medicine, obstetrics, hematology, radiology, gynecology, etc, with some of them granting the media interview [1,2]. Some of the doctors stressed that they had been thrown to the liberty to do whatever they wanted since the government had failed to fulfill her promises.

It was reported that the recruitment exercise was conducted by an agency/a firm on behalf of the Saudi Ministry of Health with the applicants paying N10,000 as the application fee and that another recruitment exercise would be conducted in one or two other cities of the country. It was further reported that it was not the first time the agency/firm would be recruiting for Saudi authorities, that the agency/firm conducted a similar interview in 2018 for medical consultants, one in Abuja and another in Lagos [3-5].

Offor P. U. et al. [6] used matching function model to analyse reasons for brain drain with a case study of this recruitment exercise. This paper targets to investigate the empirical relevance of the model. With the model, we target to carry out empirical investigation of the relationship between unemployment and Nigeria’s brain drain (1990 – 2020) using secondary data.

According to Wikipedia (visited on October 19, 2021), Human-Capital Flight refers to the emigration (or immigration) of labour force who have received advanced training at home. This is known as Brain Drain. It is loss of intellectual and technological labor force through the migration of human capital to more favorable geographic, economic, or professional environments. This movement usually occurs from developing countries to developed countries or areas.

Purchasing Power Parity is the measurement of prices in different countries that uses the prices of specific goods to compare the absolute purchasing power of the countries’ currencies.

Unemployment Rate refers to the proportion of the labour force of a nation who are qualified and are ready to work but not currently employed.

Many a time, Nigeria’s brain drain is associated with desire to secure a foreign job just like the case captured in our background to this study. Could this be as a result of high unemployment rate in Nigeria? Are there other facts or variables behind this brain drain? It is against this backdrop we have set out to empirically investigate the relationship between Nigeria’s unemployment and brain drain. Based on this statement of the problem, our broad objective of this study is to investigate the relationship between unemployment and Nigeria’s brain drain (1990 – 2020) using secondary data.

The specific objectives are:

i. To determine the extent to which unemployment rate in Nigeria causes Nigeria’s brain drain.

ii. To ascertain the extent to which poor Real GDP in Nigeria causes Nigeria’s brain drain.

iii. To assess the extent to which low value added by the manufacturing sector to Nigeria’s economy causes Nigeria’s brain drain.

The following research questions have been mapped out:

i. To what extent does unemployment rate in Nigeria have effect on Nigeria’s brain drain?

ii. To what extent does poor Real GDP in Nigeria have effect on Nigeria’s brain drain?

iii. To what extent does low value added by the manufacturing sector to Nigeria’s economy has effect on Nigeria’s brain drain?
The following hypotheses, therefore, are to be tested in this study:

i. H_1^0: Unemployment rate in Nigeria has no significant effect on Nigeria’s brain drain.

ii. H_2^0: Poor Real GDP in Nigeria has no significant effect on Nigeria’s brain drain.

iii. H_3^0: Low value added by the manufacturing sector to Nigeria’s economy has no significant effect on Nigeria’s brain drain.

For the significance of the study, it is expected that the findings of this study will disclose or unravel some of the variables responsible for Nigeria’s brain drain and proffer solutions that will help scale down the brain drain. And for the scope of the study, the empirical investigation involves the following variables – Human-Capital Flight, Unemployment, Real GDP and Value added by the manufacturing sector to Nigeria’s economy from 1990 to 2020.

2. LITERATURE REVIEW

2.1 Conceptual Review

2.1.1 Production function, homogeneity and returns to scale

We take a simple production process, according to Henderson J. M. and Quandt R. E. [7] in which an entrepreneur utilizes two variable inputs L and K to produce an output Y. $Y = f(L, K)$.

This function is assumed to be single valued continuous function with continuous first and second partial derivatives.

The inputs, L and K, are nonnegative. The output Y is nonnegative as well. Negative inputs or output make no sense here. $K = \text{quantity of the capital}$, $L = \text{quantity of the labour}$.

For the production of a certain level of output, the entrepreneur can take numerous distinct combinations of L and K, and since Y is continuous, the combinations are infinite. All the technological information about the combinations of the inputs constitute the entrepreneurial technology. The selection of the best input combination for a certain level of output depends on the prices of the input and the output, and it is subject to economic analysis. While in the shortrun, the fixed factors are kept fixed, in the longrun, the existing fixed factors are turned variables.

Returns to scale describes the response of output to a proportionate increase of all inputs.

A production function is called homogeneous of degree n if: $f(\lambda L, \lambda K) = \lambda^n f(L, K)$, $\lambda, n \in \mathbb{R}$ (\mathbb{R} = set of real numbers). If $n > 1$, we have increasing returns to scale. $n = 1$, we have constant returns to scale. $n < 1$, we have decreasing returns to scale.

The production function whose degree of homogeneity is one is called linearly homogeneous. Linear homogeneity does not imply linear function. For instance, the function $Y = L^{2/3}K^{3/3}$ is linearly homogeneous because $f(\lambda L, \lambda K) = (\lambda L)^{2/3}(\lambda K)^{3/3} = \lambda^{2/3} L^{2/3} K^{3/3} = \lambda f(L, K)$, But $Y = L^{2/5}K^{3/5}$ is not linear.

Now given a homogeneous production function $Y = f(L, K)$ of degree n, then $f(\lambda L, \lambda K) = \lambda^n f(L, K)$.

This implies that $\frac{\partial f(\lambda L, \lambda K)}{\partial L} = \frac{\partial f(L, K)}{\partial L}$. So that, $\lambda f_1(\lambda L, \lambda K) = \lambda^n f_1(L, K)$ and therefore, $f_1(\lambda L, \lambda K) = \lambda^{n-1} f_1(L, K)$. Thus, the first partial derivatives of nth degree homogeneous production function are homogeneous of degree $n - 1$. Again, if $n = 1$ in the equation $f(\lambda L, \lambda K) = \lambda^n f(L, K)$, then $\frac{\partial f(\lambda L, \lambda K)}{\partial L} = \frac{\partial f(L, K)}{\partial L}$ and we have $f_1(\lambda L, \lambda K) = f_1(L, K)$.

Similarly, $f_2(L, K) = f_2(\lambda L, \lambda K)$. This implies that the first degree homogeneous production function has zero degree homogeneous marginal productivities.

This fact can be generalized to kth partial derivatives of nth degree homogeneous production function. That is, the kth partial derivatives of nth degree homogeneous production function are homogeneous of degree $n - k$, $n \geq k$.

2.1.2 Cobb-douglas production function

In economic analysis, Cobb-Douglas production function is one of the most popularly used production function. It is given by $= AK^{\alpha}L^{\beta}$, $\Lambda, \alpha > 0, \beta < 1$, $q = \text{quantity of the output}$, $K = \text{quantity of the capital}$.
quantity of the labour, \(\alpha = \) the output elasticity of capital, \(\beta = \) the output elasticity of labour and \(\Lambda \) reflects the level of technology. \(\Lambda \) is a measure of the efficiency of the parameters.

If \(\alpha + \beta = 1 \), it’s a strict Cobb-Douglas function = constant returns to scale.

If \(\alpha + \beta \neq 1 \), it’s the generalized Cobb-Douglas function (it’s either \(\alpha + \beta > 1 \) or \(\alpha + \beta < 1 \))

If \(\alpha + \beta > 1 \), it’s an increasing returns to scale and if \(\alpha + \beta < 1 \), it’s a decreasing returns to scale.

2.1.3 Constant Elasticity of Substitution (CES) production function

Elasticity measures a variable’s sensitivity to a change in another variable. From Dowling (2007), elasticity of substitution \(\gamma \) is a measure of percentage change in the input ratio \(K/L \) as a result of a small percentage change in the input price ratio \(P_L/P_K \). That is, \(\gamma = \frac{\frac{d(K/L)}{d(P_L/P_K)}}{\frac{d(P_L/P_K)}{P_L/P_K}} \)

where \(0 \leq \gamma \leq \infty \).

If \(\gamma = 0 \), there is no substitutability. If \(\gamma = \infty \), there is perfect substitutability. The two inputs are complementary and must be used together in fixed proportion.

A constant elasticity of substitution (CES) production function has an elasticity of substitution that is constant but not necessarily equal to one. Cobb-Douglas production function is one of them.

Typically, a CES production function is expressed in the form \(q = A[\alpha K^{-\beta} + 1-\alpha-\beta]-1\beta \)

Where: \(A \) is the efficiency of the parameters. \(\alpha \) is the distribution parameters denoting factor shares (fixed proportion or combination) \(\beta \) is the elasticity of substitution \(\Lambda > 0, 0 < \alpha < 1 \) and \(\beta > -1 \).

2.1.4 Demand for labour

Under the restriction that capital stock is constant in the shortrun, the production function is given by \(Y = f(L, K) \), \(\frac{\partial f(L,K)}{\partial L} = f_L \) is the marginal product of labour and it is assumed to be on the decline as employment increases. That is, \(f_{LL} = \frac{\partial^2 f(L,K)}{\partial L^2} < 0 \).

Beyond the shortrun, when the restriction to constant capital is lifted, it is assumed that the marginal product of capital declines as capital is increased. That is, \(f_{KK} = \frac{\partial^2 f(L,K)}{\partial K^2} < 0 \).

However, it is assumed that increasing one factor raises the marginal productivity of the other factor. That is, \(\frac{\partial^2 f(L,K)}{\partial L \partial K} > 0 \).

For the case of perfect competition on the aggregate goods market, the firm, in the shortrun, can only determine the amount of production \((Y) \) and employment \((L) \) to maximize profit \(\Pi = PY - WL \), where \(\Pi = \) profit, \(W = \) nominal wage rate and \(P = \) a unit price.

Specifically, the firm needs to choose \(L \) that will give that output for profit maximization at constant capital \(\bar{K} \).

\[\max_{L} \Pi = Pf(L, \bar{K}) - WL, \]

The best the firm can do is to follow the first order condition \(P^f f_L(L, \bar{K}) - W = 0 = \frac{d\Pi}{dL} \). So, competitive labour demand functions take the form \(W/P = f^L(L, \bar{K}, \bar{K}) \). In the \((W/P, L)\) space, \(f^L \) slopes down because there are diminishing returns to the labour input. That is, \(\frac{\partial (W/P)}{\partial L} = f_{LL} < 0 \). \(P \) is always positive and \(f_{LL} < 0 \) by assumption. Thus, \(P^f_{LL} < 0 \). This is the second order condition and it implies that \(P^f_{LL}(L, \bar{K}) - W = 0 \) describes maximum.

\[\frac{P^f_{L}(L, \bar{K})}{\text{wage to marginal labour}} = \frac{W}{\text{revenue from marginal labour}} \]

Recruiting firms are found with the equation \(P^f_{L}(L, \bar{K}) = W \). The firm has to keep expanding its employment up to the point where the marginal unit of labour exactly breaks even. Additional output produced by the marginal worker yields a revenue that exactly covers the wage paid to the worker.

How much labour (demand for labour \(L^D \)) is a firm ready to hire for a given real wage rate?

We note that real wage is the purchasing power of the nominal wage. If a nominal wage \(W \) is only able to purchase \(x \)-items at the prevailing price \(P \), then \(x \) is the real wage and we write \(W = xP \) and therefore, \(x = \frac{W}{P} = \text{real wage} \).
Now, given \(P_{f1}(L^D, K) = W \), then \(f_{1}(L^D, K) = \frac{W}{p} \) and taking the total derivative \(d[f_{1}(L^D, K)] = d(\frac{W}{p}) \):
\[
\Rightarrow \frac{\partial f_{1}(L^D, K)}{\partial L} \times dL + \frac{\partial f_{1}(L^D, K)}{\partial K} \times dK = d\left(\frac{W}{p}\right).
\]
So that, \(f_{1L}dL + f_{1K}dK = d\left(\frac{W}{p}\right) \).

Therefore, \(dL = -\frac{f_{1K}}{f_{1L}}dK + \frac{1}{f_{1L}}d\left(\frac{W}{p}\right) \). Since \(f_{1L} < 0 \), \(dL \) falls as \(\left(\frac{W}{p}\right) \) increases. That is, ceteris paribus, a higher real wage \(\left[\frac{d(W/p)}{> 0}\right] \) diminishes the demand for labour \([dL^D < 0] \).

Another way to look at it is this:

With \(\frac{-f_{1K}}{f_{1L}}dK + \frac{1}{f_{1L}}d\left(\frac{W}{p}\right) \), \(\frac{-dK}{dW/p} \):
\[
\Rightarrow L^D_0 = -\frac{1}{f_{1L}} < 0. \text{ This says that demand for labour falls with respect to increase in real wage.}
\]

Similarly, with \(\frac{-f_{1K}}{f_{1L}}dK + \frac{1}{f_{1L}}d\left(\frac{W}{p}\right) \), \(\frac{-dK}{dW/p} \):
\[
\Rightarrow dL^D = -\frac{-f_{1K}}{f_{1L}}dK + \frac{1}{f_{1L}}d\left(\frac{W}{p}\right), \frac{dK}{d\left(\frac{W}{p}\right)} = \frac{-f_{1K}}{f_{1L}} > 0. \text{ This implies that increasing capital stock increases marginal product of labour.}
\]

Thus, with subsidy from the government, the firm would need to hire more labours.

2.1.5 Matching function, vacancy-unemployment ratio and their elasticities

According to Julio Garia et al. [8], when a job seeker and a job meet, if the wage is not fixed, negotiation takes place to determine the wage. There is search process which stochastically brings together the unemployed job-seeking persons and vacant jobs in a pairwise fashion called matching function.

Matching function refers to a search model which stochastically brings together the number of unemployed job-seeking persons and number of vacant jobs in a pairwise fashion. This model seeks to determine the number of job vacancies that are filled each instant as a function of the number of unemployed job-seeking persons and the number of vacancies that exist (plus some exogenous variables). The model assumes that only vacant positions are in offer. The idea is that the firm is not searching for workers to replace existing but unsatisfactory workers. It is either the person has a job or he is unemployed, and only the unemployed engage in search. Precisely, firms have jobs that are either filled or vacant.

Ben J. Heijdra [9,10] introduced this model of search in the labour market with the following assumptions:

- There are many firms and many workers.
- There is perfect competition
- Each employed worker supplies only one unit of labour with a constant effort

We denote unemployment rate by \(U \), the vacancy rate is by \(V \).

Let \(N \) denote the number of labour force. Then, at any point in time, there are \(UN \) unemployed workers and \(VN \) vacant jobs trying to find each other.

The number of successful matches is a dependent variable of \(UN \) and \(VN \). Denoting the matching rate by \(X \), Heijdra defined the matching function by \(XN = M(UN + VN) = M(UN, VN) \). We adopt the assumptions given by Offor P. U. et al. [6].

Where: \(XN \) is the total number of matches. We used \(M \) because it is the first letter of matching-function, the function \(q(\theta) \) is interpreted as probability of a vacancy being filled. The output \([q(\theta)] \) elasticity of vacancy-unemployment ratio \((\theta) \), in absolute term, is given by \(E_{q(\theta)} = \frac{-\frac{dq}{q}}{\frac{d\theta}{\theta}} = \frac{-\frac{dq}{q}}{\frac{d\theta}{\theta}} = \frac{-\theta}{\theta} = -\frac{M_{U}}{M_{U}} = -\frac{M_{U}}{M_{U}} \) where \(q = \frac{XN}{VN} \) and \(\theta = \frac{V}{U} \).

For workers, the probability of finding a firm with a vacancy is given by \(\frac{XN}{UN} \) \((XN = \text{number of vacancies, } UN = \text{number of unemployed workers}) \)

\[
\frac{XN}{UN} = M(U,V) = \frac{V}{U} \times M(\frac{V}{U}, 1) = \frac{V}{U} M(\frac{V}{U}, 1) = \frac{V}{\theta} q(\theta) = f(\theta)
\]

\(f(\theta) \) represents the probability of an unemployed worker finding a job. The output \([f(\theta)] \) elasticity of vacancy-unemployment ratio \((\theta) \), in absolute term, is given by \(E_{f(\theta)} \) and \(0 < E_{f(\theta)} < 1 \) \(\Rightarrow \text{inelastic} \). Again, this implies that the chance of an unemployed worker
finding a job does not come as fast as change in vacancy-unemployment ratio.

Thus, both the job vacancy filling elasticity of vacancy-unemployment ratio and job-finding elasticity of vacancy-unemployment ratio are inelastic.

2.1.6 Willingness to search for a job

A worker with a job earns a wage W while an unemployed worker gets some sort of unemployment benefit z, exogenously. z is a transferred payment, or could even be pecuniary value of leisure.

With the assumption of Heijdra [9] that there is an exogenously given job destruction process that ensures that a proportion s of all filled jobs disappears at each instant. Denoting the present value of the expected stream of income of an employed worker by Y_E and that of an unemployed worker by Y_U and interest rate by r, Heijdra [9] stated the steady-state equation for an unemployed worker as $rY_U = z + \theta q(\theta)(Y_E - Y_U)$ and for an employed worker as $rY_E = W - s(Y_E - Y_U)$ and this leads to $rY_U = \frac{z(r+s)+W\theta q(\theta)}{r+s+\theta q(\theta)}$ and $rY_E = \frac{r(W-z)}{r+s+\theta q(\theta)}$. Thus, for anyone to desire to search for a job, rY_E must be greater than or equal to rY_U, ceteris paribus.

2.2 Theoretical Review

2.2.1 Marxian theory of unemployment (Karl Marx, *Theorien über den Mehrwert, 1956*)

According to Karl Marx, it is in the very nature of the capitalist mode of production to overwork some workers while keeping the rest as a reserve army of unemployed paupers.

— Marx, *Theory of Surplus Value*

Marxists share the Keynesian viewpoint of the relationship between economic demand and employment, but with the caveat that the market system’s propensity to slash wages and reduce labor participation on an enterprise level causes a requisite decrease in aggregate demand in the economy as a whole, causing crises of unemployment and periods of low economic activity before the capital accumulation (investment) phase of economic growth can continue. According to Karl Marx, unemployment is inherent within the unstable capitalist system and periodic crises of mass unemployment are to be expected. He theorized that unemployment was inevitable and even a necessary part of the capitalist system, with recovery and regrowth also part of the process. The function of the proletariat within the capitalist system is to provide a "reserve army of labour" that creates downward pressure on wages. This is accomplished by dividing the proletariat into surplus labour (employees) and under-employment (unemployed). This reserve army of labour fight among themselves for scarce jobs at lower and lower wages. At first glance, unemployment seems inefficient since unemployed workers do not increase profits, but unemployment is profitable within the global capitalist system because unemployment lowers wages which are costs from the perspective of the owners. From this perspective low wages benefit the system by reducing economic rents. Yet, it does not benefit workers; according to Karl Marx, the workers (proletariat) work to benefit the bourgeoisie through their production of capital [11-13]. Capitalist systems unfairly manipulate the market for labour by perpetuating unemployment which lowers laborers’ demands for fair wages. Workers are pitted against one another at the service of increasing profits for owners. As a result of the capitalist mode of production, Marx argued that workers experienced alienation and estrangement through their economic identity. According to Marx, the only way to permanently eliminate unemployment would be to abolish capitalism and the system of forced competition for wages and then shift to a socialist or communist economic system. For contemporary Marxists, the existence of persistent unemployment is proof of the inability of capitalism to ensure full employment.

2.2.2 Okun’s law of economic growth and unemployment

This law states that if the growth rate exceeds the growth trend or average growth rate, it will lead to a decrease in the unemployment rate. This is expressed as

$$\Delta u = k(y - y^{'})$$

Where Δu denotes change in unemployment rate, y denotes growth rate of the product and $y^{'}$.
denotes growth trend of RGDP. y^* varies from country to country. It was indeed the relationship between economic growth and unemployment rate in United States (1947–1960) that Arthur Okun examined by regression analysis using quarterly. The developed regression equation has it that the difference between full employment income and current income varies inversely with the unemployment rate. Okun stated that if the growth rate exceeds the trend or average growth rate measured at 2.25%, it will result to a decrease in unemployment rate. When the economy records growth above the natural rate, there will be a change in the unemployment rate to k times the difference between the actual and natural growth rate.

2.2.3 Beine-docquier-rapoport result on brain drain

The result, which is credited to Beine M. et al. [14], states that a brain drain is beneficial to the source country if and only if the probability of migration verifies the following condition:

$$p \times Z(p) = p(Ap^2 + Bp + C) < 0 \quad \text{with} \quad A = (w-1)^2, \quad B = (w-1)(\frac{a^2-a_f^2}{a_f}) + 3 - w \quad \text{and} \quad C = \frac{a^2-a_f^2}{a_f} - 2(w-1).$$

Where:
- p = the probability to be allowed to migrate and $Z(p)$ = the probability to migrate.
- a = upper bound of the probability space for uniformly distributed parameters of individual ability to transform a given time spent in education into productive skills.
- a_f = ability of the critical agents (workforce) to migrate.
- w = the relative return to education net from any migration costs. $w > 1$.

By “brain drain”, the authors mean the emigration of a proportion of the population that is highly educated relative to the average. The model looks at the impact of brain drain on the home country of the migrants. The first impact, seen to be potentially beneficial and called “brain effect”, focuses on the fact that migration opportunities promote investment in education because of its higher returns abroad. The second impact is observed to be detrimental owing to the departure of many educated agents, and it is termed “drain effect”. The total impact therefore depends on which effect is dominant.

2.3 Empirical Review

Dare Ojo Omonijo et al. [15] carried out a study on the topic “understanding the escalation of brain drain in Nigeria from poor leadership point of view”. The objective of the study was to find out if there was a relationship between poor leadership in Nigeria and the escalation of brain drain. Primary data were used. Simple percentage and ranking method were used to analyze the data. Chi-square was used to test its hypothesis and the result indicated that there is a relationship between poor leadership of the country and brain drain. It equally revealed that students were interested in travelling out of the country to developed societies after their studies. The findings of the study further identified some causes of brain drain which included mass unemployment, poor salaries and poor conditions of service, mass poverty, religious and communal crises. The study also identified some effects of brain drain on the nation’s economy to include: loss of human capital assets to man various institutions in the country, loss of tax of migrated manpower to foreign countries. Solutions proffered included: good leadership, improved salary structure for workers and good conditions of service.

Zamokuhle Manana [16] investigated the relationship between brain drain and economic growth Eswatini (Swaziland) under the topic “Assessing the Relationship between Brain Drain and the Economy of Eswatini”. The study employed annual time series data from the World Bank Indicators from 1991 to 2017. Bounds test approach was adopted to test for co-integration and it was found that no long-run equilibrium relationship existed between the variables. The short-run Autoregressive Distributed Lag (ARDL) model as the estimation technique and the result revealed that brain drain was in direct relationship with Gross Domestic Product increase in the short-run. Finally, the Granger causality test revealed a unidirectional relationship from Gross Domestic Product to brain drain at the 1% significance level.

Oluwemil T. A. and Oluwaseyi O. P. [19] explored the impact migration from Nigeria has on economic output growth by focusing on the migration rate, remittances, population growth and secondary school enrolment under the topic “Human capital flight and output growth nexus: evidence from Nigeria”. Time series data between 1986 and 2018 were used in the investigation and ARDL was used for the
analysis. The findings were: that net migration rate from Nigeria was disadvantageous for the economy, given its negative relationship with economic growth despite the large volume of foreign incomes (remittances), that secondary school enrolment positively and significantly impacted the Nigerian growth rate in the long run.

2.4 Gap in Literature

Through the literature review, we found out that so much have been written on topics bordering around brain drain and the economy of nations, by many authors. We, however found out that none of the authors adopted matching function model in their study.

So, to bridge the gap in the literature, this study has introduced matching function model into empirical investigations on issues bordering around brain drain and economy of nations. One advantage of matching function model is that the computations are easy and straightforward.

3. RESEARCH METHODOLOGY

3.1 Research Design: Empirical Investigation

This paper is all about investigating empirical relevance of Offor P. U. et al. [6]'s matching function model. With the model, we target to carry out empirical investigation of the relationship between unemployment and Nigeria’s brain drain (1990 – 2020) using secondary data.

3.2 Model Specification

As we stated earlier, brain drain is migration of intellectuals and technical personnel from a nation. Offor P. U. et al. [6]’s model focuses on job as the force of attraction. Thus, brain drain here has to do with the number of job vacancies abroad that are filled at each instant.

To carry out an empirical analysis of the matching function, our first effort is to linearize the matching function.

Here is the matching function:
\[(UN, VN) = [\alpha(\Psi UN)^{\xi} + (1 - \alpha)(\Phi VN)^{\xi}]^{\frac{\xi - 1}{\xi}}, \quad 0 < \alpha < 1 \]

By the way of binomial expansion, the series is infinite since \(\frac{\xi - 1}{\xi} < 1 \) and we have

\[
[\alpha(\Psi UN)^{\xi} + (1 - \alpha)(\Phi VN)^{\xi}]^{\frac{\xi - 1}{\xi}} = \left(\alpha(\Psi UN)^{\xi} \right)^{\frac{\xi - 1}{\xi}} + \left(\frac{\xi - 1}{\xi} \right) \left(\alpha(\Psi UN)^{\xi} \right)^{\frac{\xi - 2}{\xi}} (1 - \alpha)(\Phi VN)^{\xi} + \cdots
\]

Where \(\frac{\xi - 1}{\xi} \frac{\xi - 2}{\xi} = \frac{\xi - 1}{\xi} \frac{\xi - 2}{\xi} \), and so on. We truncate at the first term and with brain drain proxied by human-capital flight (HF), we have

\[HF = \left(\alpha(\Psi UN)^{\xi} \right)^{\frac{\xi - 1}{\xi}} = \alpha \Psi UN. \]

3.3 Truncation Error

There is always an error when a series is truncated. If our own case here is not managed well, we may have a very explosive truncation error which will lead to spurious empirical analysis. Our effort now is to bring the error to a value very close to zero.

Our truncation error is the value of the series that we have just cut off. That is,

\[
\text{Truncation error} = \left(\frac{\xi - 1}{\xi} \right) \left(\alpha(\Psi UN)^{\xi} \right)^{\frac{\xi - 1}{\xi}} (1 - \alpha)(\Phi VN)^{\xi} + \left(\frac{\xi - 1}{\xi} \right) \left(\alpha(\Psi UN)^{\xi} \right)^{\frac{\xi - 2}{\xi}} (1 - \alpha)(\Phi VN)^{\xi} + \cdots
\]
OR Truncation error = \sum_{r = 1}^{\infty} \left(\frac{\xi - 1}{\xi} \right) \left(a(\Psi UN)^{\xi - 1} \right)^{\frac{\xi - 1}{\xi - r}} \left((1 - a)(\Phi VN)^{\xi - 1} \right)^{r}

Now consider the limiting values of \(\frac{\xi - 1}{\xi} \)

If we subject \(\xi \) to a very large value, the values of \(\frac{\xi - 1}{\xi} \) will be very close to 1. And if we make the proper fraction \(\alpha \) come so close to 1 that the difference \(1 - \alpha \) becomes infinitesimal (nearest to zero), then the following shall be our results:

i. \(a(\Psi UN)^{\xi - 1} \) will be very close to being equal to \(\Psi UN \) and \((1 - \alpha)(\Phi VN)^{\xi - 1} \) (r = 1, 2, 3, ...) will tend to zero as \(r \) increases. This is obvious because \(\frac{\xi - 1}{\xi} - r \) \((r = 1, 2, 3, ...) \) is increasingly negative.

ii. \((1 - \alpha)(\Phi VN)^{\xi - 1} \) will be very close to being equal to zero and \((1 - \alpha)(\Phi VN)^{\xi - 1} \) (r = 1, 2, 3, ...) will be very much closer to being equal to zero as \(r \) increases.

iii. \(\left(\frac{\xi - 1}{\xi} \right)^r (r = 1, 2, 3, ...) \) will alternate in sign since \(\frac{\xi - 1}{\xi} \) is less than 1. And we shall have

\[\left(\frac{\xi - 1}{\xi} \right)^r \left(\frac{\xi - 1}{1 - \alpha} \right)^r = \begin{cases} \text{negative when } r = \text{even number} \quad (r = 1, 2, 3, ...) \end{cases} \]

With this alternation in sign, the terms of the truncation error will keep cancelling out instead of accumulating. So that,

Truncation error = \sum_{r = 1}^{\infty} \left(\frac{\xi - 1}{\xi} \right) \left(a(\Psi UN)^{\xi - 1} \right)^{\frac{\xi - 1}{\xi - r}} \left((1 - \alpha)(\Phi VN)^{\xi - 1} \right)^{r}

will be approximately equal to zero.

Thus, our choice of \(\xi \) so large enough that the limiting values of \(\frac{\xi - 1}{\xi} \) and \(\frac{\xi}{\xi - 1} \) tend to 1, together with our choice of the proper fraction \(\alpha \) so close to 1 that the difference \(1 - \alpha \) becomes infinitesimal brings our truncation error very close to zero. We can now confidently take our matching function as

\(HF = \alpha \left(\frac{\xi - 1}{\xi} \right) \Psi UN \), \(HF = \text{Human-Capital Flight} \).

Recall that \(UN \) is the number of unemployed workers and \(\Psi UN \) is the product of the number of unemployed workers and the variables responsible. Variables in this product \(\Psi UN \) include, but not limited to:

- Mass unemployment proxied by unemployment rate and denoted by UNEMP
- Poor salaries and poor economic performance proxied by GDP per capita by purchasing power parity (real GDP, PPP based) and denoted by RGDP
- Poor workers’ welfare and poor working conditions proxied by life expectancy of workers, and denoted by LE
- Insecurity = \(\begin{cases} \text{Religious crises} \\ \text{Communal crises} \\ \text{Political crises} \\ \text{Crimes} \end{cases} \) proxied by Security Threat Index and denoted by INS

89
Outdated and inappropriate school curricula)
Lack of quality education proxied by Human development index and denoted by HDI
Paucity of manufacturing factories proxied by value added by the manufacturing sector as percent of GDP and denoted by VAMS
Recession/Depression proxied by Economic Decline Index denoted by ED

We are cutting down to variables with fairly reasonable quantity of available data. We are going with HF, RGDP, UNEMP, VAMS, ED and HDI. Our model can now be specified as follows:

\[HF = \alpha + \beta (RGDP)^{\gamma} (UNEMP)^{\delta} (VAMS)^{\varepsilon} (LE)^{\zeta}. \]

Taking logarithms of both sides, we have

\[\text{LOG}(HF) = \frac{\xi}{\zeta} \text{LOG} \alpha + \delta \text{LOG(RGDP)} + \eta \text{LOG(UNEMP)} + \theta \text{LOG(VAMS)} + \omega \text{LOG(LE)} + \mu_t \]

We may choose to shorten \(\text{LOG} \) to \(L \) and have a little touch on the parameters and then have:

\[LHF = \beta_0 + \beta_1 LRGDP + \beta_2 LUNEMP + \beta_3 LVAMS + \beta_4 LLE + \mu_t \]

Where:

\(\text{LHF} = \) Natural logarithm of human-capital flight, \(\text{LRGDP} = \) Natural logarithm of real GDP (PPP based)
\(\text{LUNEMP} = \) Natural logarithm of unemployment rate
\(\text{LVAMS} = \) Natural logarithm of value added by the manufacturing sector as percent of GDP
\(\text{LLE} = \) Natural logarithm of life expectancy of workers, \(\mu_t = \) The Error term

The ARDL model is our parameter estimator and we go with the structure \(ARDL(p, q, m, n) \). The error correction model is specified as follows:

\[\Delta LHF_t = \zeta_0 + \zeta_1 LHF_{t-1} + \zeta_2 LRGDP_{t-1} + \zeta_3 LUNEMP_{t-1} + \sum_{i=1}^{m} \lambda_1 \Delta LHF_{t-i} + \sum_{i=0}^{q} \lambda_2 \Delta LRGDP_{t-i} + \sum_{i=0}^{p} \lambda_3 \Delta LVAMS_{t-i} + \sum_{i=0}^{n} \lambda_4 \Delta LLE_{t-i}. \]

Where \(\Delta \) = the difference operator, \(\zeta \) and \(\lambda \) are the parameters.

3.4 Source of Data

Annual time series data from 1990 to 2020 are used in this study and the following websites are the sources of the data:

3.5 Model Estimation/Method of Data Analysis

The empirical investigation will take the following steps:

- Finding the appropriate lag
- Examination of the stationarity of the variables using the Unit Root Test

- Examination of the causal relationships among the variables using the Granger Causality Test and Diagnostic Tests.

4. RESULTS AND DISCUSSIONS

4.1 Finding the Appropriate Lag

4.1.1 Akaike Info Criterion (AIC) and Schwarz Info Criterion (SIC)

From the excerpts of Tables 1, 2 and 3 above, our best bet is to go with lag 4 because it is the lag with least AIC and SIC.

From Table 4, Akaike Information Criterion (−20.93512) is less than Schwarz Information Criterion (−17.67153), we shall therefore go with Akaike Information Criterion. Thus, our chosen lag for our analyses is Lag 4 under Akaike Information Criterion.
Table 1. Excerpt from ARDL Lag 2 structure

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R-squared</td>
<td>0.991788</td>
<td>Mean dependent var</td>
<td>0.825183</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.989050</td>
<td>S.D. dependent var</td>
<td>0.068046</td>
</tr>
<tr>
<td>S.E. of regression</td>
<td>0.007120</td>
<td>Akaike info criterion</td>
<td>-6.822763</td>
</tr>
<tr>
<td>Sum squared resid</td>
<td>0.001065</td>
<td>Schwarz criterion</td>
<td>-6.445578</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>106.9301</td>
<td>Hannan-Quinn criter.</td>
<td>-6.704633</td>
</tr>
<tr>
<td>F-statistic</td>
<td>362.3089</td>
<td>Durbin-Watson stat</td>
<td>1.931800</td>
</tr>
<tr>
<td>Prob(F-statistic)</td>
<td>0.000000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: p-values and any subsequent tests do not account for model selection

Table 2. Excerpt from ARDL lag 4 criterion

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R-squared</td>
<td>0.993826</td>
<td>Mean dependent var</td>
<td>0.833271</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.991082</td>
<td>S.D. dependent var</td>
<td>0.063258</td>
</tr>
<tr>
<td>S.E. of regression</td>
<td>0.005974</td>
<td>Akaike info criterion</td>
<td>-7.141656</td>
</tr>
<tr>
<td>Sum squared resid</td>
<td>0.000642</td>
<td>Schwarz criterion</td>
<td>-6.709711</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>105.4124</td>
<td>Hannan-Quinn criter.</td>
<td>-7.013216</td>
</tr>
<tr>
<td>F-statistic</td>
<td>362.1722</td>
<td>Durbin-Watson stat</td>
<td>2.404127</td>
</tr>
<tr>
<td>Prob(F-statistic)</td>
<td>0.000000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: p-values and any subsequent tests do not account for model selection

Table 3. Excerpt from ARDL lag 6 criterion

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singular Matrix</td>
<td></td>
</tr>
</tbody>
</table>

Note: p-values and any subsequent tests do not account for model selection

Table 4. Excerpt from Vector Autoregression Estimates for choice of Lag

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Determinant resid covariance (dof adj.)</td>
<td>3.28E-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Determinant resid covariance</td>
<td>6.17E-17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log likelihood</td>
<td>350.6241</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akaike information criterion</td>
<td>-20.93512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schwarz criterion</td>
<td>-17.67153</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2 Summary of the Results of the Unit Root Test

The result of the unit root test above shows that human-capital flight (LHF) is stationary at level while Real GDP (LRGDP), Unemployment rate (LUNEMP), Value added by the manufacturing sector (LVAMS) are all stationary at first difference. We have mixed order of integration. ARDL Bounds test is therefore needed to investigate the cointegration or long-run relationship of the variables. The life expectancy is stationary at first difference only at 10% level of significance. We want to maintain 5% level of significance in our ARDL estimations. We shall, therefore, not use life expectancy (LLE).

Table 5. Unit root test from eviews 9

<table>
<thead>
<tr>
<th>Series</th>
<th>5%Critical value @ Level</th>
<th>ADF t-Statistics @ Level</th>
<th>5%Critical value @ 1st Difference</th>
<th>ADF t-Statistics @1st Difference</th>
<th>Order of Integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHF</td>
<td>-1.952473</td>
<td>5.033749</td>
<td>-</td>
<td>-</td>
<td>I(0)</td>
</tr>
<tr>
<td>LRGDP</td>
<td>-1.952910</td>
<td>0.768986</td>
<td>-1.952910</td>
<td>-2.131107</td>
<td>I(1)</td>
</tr>
<tr>
<td>LUNEMP</td>
<td>-1.952473</td>
<td>1.737871</td>
<td>-1.952910</td>
<td>-4.562023</td>
<td>I(1)</td>
</tr>
<tr>
<td>LVAMS</td>
<td>-1.952473</td>
<td>-1.205098</td>
<td>-1.952910</td>
<td>-3.775617</td>
<td>I(1)</td>
</tr>
<tr>
<td>LLE</td>
<td>-1.953381</td>
<td>0.416376</td>
<td>-1.953381 @ 5%</td>
<td>-1.618517 @ 10%</td>
<td>I(1) @ 10%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-1.609798@10%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.3 Multicollinearity Test

Variance Inflation Factors
Date: 03/05/22 Time: 18:38
Sample: 1990 2020
Included observations: 31

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Uncentered VIF</th>
<th>Centered VIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.146808</td>
<td>10475.61</td>
<td>NA</td>
</tr>
<tr>
<td>LRGDP</td>
<td>0.009110</td>
<td>8413.640</td>
<td>7.132574</td>
</tr>
<tr>
<td>LUNEMP</td>
<td>0.001665</td>
<td>49.91007</td>
<td>1.874503</td>
</tr>
<tr>
<td>LVAMS</td>
<td>0.003277</td>
<td>276.0842</td>
<td>5.569446</td>
</tr>
</tbody>
</table>

Since the Centered VIF coefficients are less than 10 for all the explanatory variables, we conclude that no severe multicollinearity exists in the model.

4.4 Ardl Cointegration Tests

4.4.1 Bounds test

<table>
<thead>
<tr>
<th>Null Hypothesis: No long-run relationships exist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Statistic Value k</td>
</tr>
<tr>
<td>F-statistic 10.43367 3</td>
</tr>
</tbody>
</table>

Critical Value Bounds

<table>
<thead>
<tr>
<th>Significance</th>
<th>I0 Bound</th>
<th>I1 Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>3.47</td>
<td>4.45</td>
</tr>
<tr>
<td>5%</td>
<td>4.01</td>
<td>5.07</td>
</tr>
<tr>
<td>2.5%</td>
<td>4.52</td>
<td>5.62</td>
</tr>
<tr>
<td>1%</td>
<td>5.17</td>
<td>6.36</td>
</tr>
</tbody>
</table>

From the table, F-statistic value (10.43367) is greater than the upper bound 5% critical value. We therefore reject the null hypothesis which states that “No long-run relationships exist”. Thus, we uphold that long-run relationships exist amongst the variables.

4.4.2 ARDL short-run cointegration and long run coefficients test

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(LHF(-1))</td>
<td>0.952268</td>
<td>0.308968</td>
<td>3.082092</td>
<td>0.0076</td>
</tr>
<tr>
<td>D(LHFI(-2))</td>
<td>0.741432</td>
<td>0.240886</td>
<td>3.077938</td>
<td>0.0077</td>
</tr>
<tr>
<td>D(LHFI(-3))</td>
<td>0.460406</td>
<td>0.186373</td>
<td>2.470349</td>
<td>0.0260</td>
</tr>
<tr>
<td>D(LRGDP)</td>
<td>-0.121977</td>
<td>0.048696</td>
<td>-2.504846</td>
<td>0.0243</td>
</tr>
<tr>
<td>D(LUNEMP)</td>
<td>-0.044767</td>
<td>0.026802</td>
<td>-1.670295</td>
<td>0.1156</td>
</tr>
<tr>
<td>D(LUNEMP(-1))</td>
<td>0.010588</td>
<td>0.030553</td>
<td>0.346559</td>
<td>0.7337</td>
</tr>
</tbody>
</table>
Table 7 gives us the long-run cointegrating equation as

\[
LHF = 0.9582 - 0.0713\times LRGDP - 0.0584\times LUNEMP - 0.0037\times LVAMS + 0.9582 + 0.0093\times @TREND
\]

Both RGDP and UNEMP are statistically significant but are in inverse relationship with HF. 1% increase in RGDP will bring about 0.0713% decrease in Human-Capital Flight. Similarly, 1% increase in unemployment rate will cause 0.0584% decrease in Human-Capital Flight. The inverse relationship of unemployment rate with Human-Capital Flight appears to be contrary to expectation (a priori). This reversed expectation could be coming from the fact that a good number of those who flee do not do so because they are unemployed in the home-country, but because they have found other reasons to flee, such as insecurity.

On the other hand, value added by the manufacturing sector VAMS is not statistically significant even though the sign of the coefficient was our a priori expectation. It is in inverse relationship with HF. 1% increase in the value added by the manufacturing sector will bring about 0.0037% decrease in human-capital flight.

The result further shows that the error correction term ECT (-1) is significant, properly signed and the speed of adjustment towards long-run equilibrium is -1.710869. This means that approximately 171% of the error is corrected in each period. This high speed of adjustment implies that all deviations/errors will be corrected within one year to bring the system to long-run equilibrium.

4.5 Granger causality test

<table>
<thead>
<tr>
<th>Null Hypothesis</th>
<th>Obs</th>
<th>F-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRGDP does not Granger Cause LHF</td>
<td>30</td>
<td>3.65127</td>
<td>0.0667</td>
</tr>
<tr>
<td>LHF does not Granger Cause LRGDP</td>
<td></td>
<td>2.59682</td>
<td>0.1187</td>
</tr>
<tr>
<td>LUNEMP does not Granger Cause LHF</td>
<td>30</td>
<td>1.61092</td>
<td>0.2152</td>
</tr>
<tr>
<td>LHF does not Granger Cause LUNEMP</td>
<td></td>
<td>3.61836</td>
<td>0.0679</td>
</tr>
<tr>
<td>LVAMS does not Granger Cause LHF</td>
<td></td>
<td>1.48099</td>
<td>0.2342</td>
</tr>
<tr>
<td>LHF does not Granger Cause LVAMS</td>
<td></td>
<td>1.07426</td>
<td>0.3092</td>
</tr>
<tr>
<td>LUNEMP does not Granger Cause LRGDP</td>
<td>30</td>
<td>5.66061</td>
<td>0.0247</td>
</tr>
<tr>
<td>LRGDP does not Granger Cause LUNEMP</td>
<td></td>
<td>3.91941</td>
<td>0.0580</td>
</tr>
<tr>
<td>LVAMS does not Granger Cause LRGDP</td>
<td>30</td>
<td>38.3477</td>
<td>1.E-06</td>
</tr>
<tr>
<td>LRGDP does not Granger Cause LVAMS</td>
<td></td>
<td>3.37016</td>
<td>0.0774</td>
</tr>
<tr>
<td>LVAMS does not Granger Cause LUNEMP</td>
<td>30</td>
<td>0.68138</td>
<td>0.4163</td>
</tr>
<tr>
<td>LUNEMP does not Granger Cause LVAMS</td>
<td></td>
<td>4.37486</td>
<td>0.0460</td>
</tr>
</tbody>
</table>
The Granger Causality test results above is here to investigate causal relationship amongst the variables. As usual, only two variables are considered at a time and the two variables are both dependent and in turn independent. The test gives us the direction of causality among these variables, and three types of causal relationship exist. Viz: Bidirectional causality, Unidirectional causality and No causal relationship.

In our test results above, we observed that at 5% level of significance, there are no bidirectional relationships, we only have unidirectional relationships: UNEMP does Granger Cause RGDP, VAMS does Granger Cause RGDP and UNEMP does Granger Cause VAMS.

At 10% level of significance however, there are bidirectional causalities. Viz: bidirectional causality exists between UNEMP and RGDP, bidirectional causality exists between RGDP and VAMS.

4.6 Diagnostic Tests

4.6.1 Breusch-godfrey serial correlation LM test

Here, we test for autocorrelation. This is to find out if our model is free from serial correlation.

\[H_0: \text{There is no autocorrelation.} \]

<table>
<thead>
<tr>
<th>Table 9. Source: Eviews9 output</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-statistic</td>
</tr>
<tr>
<td>Obs*R-squared</td>
</tr>
</tbody>
</table>

The result in the table shows that Prob. Chi-Square of 0.1080, which is not significant at 5% level of significance. We can not therefore reject the null hypothesis. Thus, our model has no significant trace of autocorrelation.

4.6.2 Breusch-pagan-godfrey heteroskedasticity test

\[H_0: \text{There is no Heteroskedasticity} \]

<table>
<thead>
<tr>
<th>Table 10. Source: Eviews9 output</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-statistic</td>
</tr>
<tr>
<td>Obs*R-squared</td>
</tr>
<tr>
<td>Scaled explained SS</td>
</tr>
</tbody>
</table>

The result shows that Prob. Chi-Square corresponding to Obs*R-squared is 0.1843, which is not significant at 5% level of significance. Thus, we can not reject the null hypothesis. We therefore conclude that our model has no significant trace of heteroskedasticity.

4.6.3 ARCH Heteroskedasticity Test:

To examine if our model is free from ARCH effect

\[H_0: \text{There is no ARCH effect} \]

<table>
<thead>
<tr>
<th>Table 11. Heteroskedasticity Test: ARCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-statistic</td>
</tr>
<tr>
<td>Obs*R-squared</td>
</tr>
</tbody>
</table>

The result in the table shows that Prob. Chi-Square corresponding to Obs*R-squared is 0.4558, which is not significant at 5% level of significance. Therefore, we can not reject the null hypothesis. Thus, we conclude that our model is free from ARCH effect.
4.6.4 Jarque – Bera Test

To find out if the residuals of our model are normally distributed

![Fig. 1. Source: Eviews9 output.](image)

With the prob value greater than 5%, our conclusion is that the residuals of our model are normally distributed.

4.6.5 CUSUM stability test

Our model is further subjected to a CUSUM stability test and the figure below is the result. CUSUM means cumulative sum. It is used to investigate whether or not the coefficients (parameters) of our model are changing systematically (stable).

Null Hypothesis: parameters are stable.

Acceptance of the null hypothesis is desirable.

![Fig. 2. Source: Eviews9 output](image)

The CUSUM test result above shows that our model is fairly stable given that the CUSUM line is within the 5% significance boundary.
4.7 Discussions on our Research Hypotheses

Having carried the necessary tests, it is now time to give responses to our research hypotheses based on our findings.

4.7.1 \(H_0^1 \): Unemployment rate in Nigeria has no significant effect on Nigeria's brain drain.

Our findings in Table 7 show that Unemployment rate in Nigeria has a significant effect on Nigeria's brain drain. Decision: We reject \(H_0^1 \).

4.7.2 \(H_0^2 \): Poor Real GDP in Nigeria have no significant effect on Nigeria's brain drain.

Our findings in Table 7 show that Nigeria's real GDP has a significant effect on Nigeria's brain drain. Decision: We reject \(H_0^2 \).

4.7.3 \(H_0^3 \): Low value added by the manufacturing sector to Nigeria's economy has no significant effect on Nigeria's brain drain.

Our findings in Table 4.4.2 show that value added by the manufacturing sector to Nigeria’s economy has no significant effect on Nigeria’s brain drain. Decision: We accept \(H_0^3 \).

5. SUMMARY, CONCLUSION AND RECOMMENDATIONS

5.1 Summary of Findings

This research work is all about data-based testing of Offor P. U. et al (2022)’s matching function model. With the model, we carried out empirical investigation of the relationship between unemployment and Nigeria’s brain drain (1990 – 2020) using secondary data.

The matching function model is \(M(U_N, V_N) = \left[\alpha (\Psi U N)^{\frac{\ell}{\ell - 1}} + (1 - \alpha) (\Phi V N)^{\frac{\ell}{\ell - 1}} \right]^{\frac{\ell - 1}{\ell}} \),

Where:
- \(LHF = \) Natural logarithm of human-capital flight
- \(LRGDP = \) Natural logarithm of real GDP
- \(LUNEMP = \) Natural logarithm of unemployment rate
- \(LVAMS = \) Natural logarithm of value added by the manufacturing sector as percent of GDP
- \(LLE = \) Natural logarithm of life expectancy of workers
- \(\mu_t = \) The Error term

Through relevant tests, it was established that the model is fairly stable and that long-run relationships exist amongst the variables. The empirical findings are:

- Unemployment rate in Nigeria has a significant effect on Nigeria’s brain drain in an inverse relationship
- Nigeria's real GDP (PPP based) has a significant effect on Nigeria’s brain drain in an inverse relationship
- Value added by the manufacturing sector to Nigeria’s economy has an inverse relationship with Nigeria’s brain drain but quite insignificantly.

5.2 Conclusion

A priori assertion or judgement not backed by empirical investigations may be quite misleading. This empirical study has revealed that in some economies like Nigeria, unemployment in home nation may not necessarily be a factor responsible for brain drain. For instance, in the case of Nigerian medical doctors who teemed out at Sheraton Hotel Abuja for a recruitment exercise organized by the Saudi Arabia health ministry, most of the doctors were gainfully employed in Nigeria as at the time of the recruitment exercise. This is a clear indication that other stronger variables must be responsible for the Nigeria’s brain drain.

In conclusion therefore, this study has disclosed that unemployment rate in Nigeria is not necessarily in direct relationship with Nigeria’s brain drain. Within the period of time (1990 – 2020) this study looked into, the relationship empirically reported inverse.

5.3 Recommendations

Once again, this study has disclosed that increase in Nigeria’s real GDP (PPP based) significantly discourages Nigeria’s brain drain. It also disclosed that increase in value added by the manufacturing sector to Nigeria’s economy discourages Nigeria’s brain drain, though insignificantly. We therefore recommend that Nigerian authorities should take giant strides to expand and flourish manufacturing sector and this will, by extension, improve Nigeria's real GDP (PPP based). To do this, the authorities need to, among other drawbacks, fix the
insecurity problem of the country to create safe environment to attract both local investments and foreign direct investments. This will bring improvement on employment, revenue to the government through tax, transfer of technology, human-capital development, exchange rate, etc.

When the exchange rate is improved, or, when the home currency can compete favorably with the foreign currencies, with insecurity reduced to minimum, the propensity to flee in search of greener pasture will invariably scale down.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

12. Available:https://m.guardian.ng. visited on September 20, 2021